Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
The Lancet Regional Health - Western Pacific ; 31, 2023.
Article in English | Scopus | ID: covidwho-2241568

ABSTRACT

Overall survival (OS) is considered the standard clinical endpoint to support effectiveness claims in new drug applications globally, particularly for lethal conditions such as cancer. However, the source and reliability of OS in the setting of clinical trials have seldom been doubted and discussed. This study first raised the common issue that data integrity and reliability are doubtful when we collect OS information or other time-to-event endpoints based solely on simple follow-up records by investigators without supporting material, especially since the 2019 COVID-19 pandemic. Then, two rounds of discussions with 30 Chinese experts were held and 12 potential source scenarios of three methods for obtaining the time of death of participants, including death certificate, death record and follow-up record, were sorted out and analysed. With a comprehensive assessment of the 12 scenarios by legitimacy, data reliability, data acquisition efficiency, difficulty of data acquisition, and coverage of participants, both short-term and long-term recommended sources, overall strategies and detailed measures for improving the integrity and reliability of death date are presented. In the short term, we suggest integrated sources such as public security systems made available to drug inspection centres appropriately as soon as possible to strengthen supervision. Death certificates provided by participants' family members and detailed standard follow-up records are recommended to investigators as the two channels of mutual compensation, and the acquisition of supporting materials is encouraged as long as it is not prohibited legally. Moreover, we expect that the sharing of electronic medical records and the legal disclosure of death records in established health registries can be realized with the joint efforts of the whole industry in the long-term. The above proposed solutions are mainly based on the context of China and can also provide reference for other countries in the world. © 2022 The Authors

2.
Sci Rep ; 13(1): 2163, 2023 02 07.
Article in English | MEDLINE | ID: covidwho-2227499

ABSTRACT

Presented here is a magnetic hydrogel particle enabled workflow for capturing and concentrating SARS-CoV-2 from diagnostic remnant swab samples that significantly improves sequencing results using the Oxford Nanopore Technologies MinION sequencing platform. Our approach utilizes a novel affinity-based magnetic hydrogel particle, circumventing low input sample volumes and allowing for both rapid manual and automated high throughput workflows that are compatible with Nanopore sequencing. This approach enhances standard RNA extraction protocols, providing up to 40 × improvements in viral mapped reads, and improves sequencing coverage by 20-80% from lower titer diagnostic remnant samples. Furthermore, we demonstrate that this approach works for contrived influenza virus and respiratory syncytial virus samples, suggesting that it can be used to identify and improve sequencing results of multiple viruses in VTM samples. These methods can be performed manually or on a KingFisher automation platform.


Subject(s)
COVID-19 , Nanopore Sequencing , Humans , SARS-CoV-2 , Nanopore Sequencing/methods , Hydrogels , High-Throughput Nucleotide Sequencing/methods , Magnetic Phenomena
3.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210308, 2022 Oct 03.
Article in English | MEDLINE | ID: covidwho-1992465

ABSTRACT

During infectious disease outbreaks, inference of summary statistics characterizing transmission is essential for planning interventions. An important metric is the time-dependent reproduction number (Rt), which represents the expected number of secondary cases generated by each infected individual over the course of their infectious period. The value of Rt varies during an outbreak due to factors such as varying population immunity and changes to interventions, including those that affect individuals' contact networks. While it is possible to estimate a single population-wide Rt, this may belie differences in transmission between subgroups within the population. Here, we explore the effects of this heterogeneity on Rt estimates. Specifically, we consider two groups of infected hosts: those infected outside the local population (imported cases), and those infected locally (local cases). We use a Bayesian approach to estimate Rt, made available for others to use via an online tool, that accounts for differences in the onwards transmission risk from individuals in these groups. Using COVID-19 data from different regions worldwide, we show that different assumptions about the relative transmission risk between imported and local cases affect Rt estimates significantly, with implications for interventions. This highlights the need to collect data during outbreaks describing heterogeneities in transmission between different infected hosts, and to account for these heterogeneities in methods used to estimate Rt. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.


Subject(s)
COVID-19 , Bayes Theorem , COVID-19/epidemiology , Disease Outbreaks , Humans , Reproduction , Time
4.
Sci Rep ; 10(1): 22425, 2020 12 30.
Article in English | MEDLINE | ID: covidwho-1003311

ABSTRACT

Here we present a rapid and versatile method for capturing and concentrating SARS-CoV-2 from contrived transport medium and saliva samples using affinity-capture magnetic hydrogel particles. We demonstrate that the method concentrates virus from 1 mL samples prior to RNA extraction, substantially improving detection of virus using real-time RT-PCR across a range of viral titers (100-1,000,000 viral copies/mL) and enabling detection of virus using the 2019 nCoV CDC EUA Kit down to 100 viral copies/mL. This method is compatible with commercially available nucleic acid extraction kits (i.e., from Qiagen) and a simple heat and detergent method that extracts viral RNA directly off the particle, allowing a sample processing time of 10 min. We furthermore tested our method in transport medium diagnostic remnant samples that previously had been tested for SARS-CoV-2, showing that our method not only correctly identified all positive samples but also substantially improved detection of the virus in low viral load samples. The average improvement in cycle threshold value across all viral titers tested was 3.1. Finally, we illustrate that our method could potentially be used to enable pooled testing, as we observed considerable improvement in the detection of SARS-CoV-2 RNA from sample volumes of up to 10 mL.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Hydrogels/chemistry , Nasopharynx/virology , RNA, Viral/analysis , Saliva/virology , Diagnostic Tests, Routine , Humans , Real-Time Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Specimen Handling , Viral Load/methods
SELECTION OF CITATIONS
SEARCH DETAIL